imc

rartof SCheer

T

imc Learning Suite
New system architecture and technologies

im-c.com

imc AG - Technical Whitepaper | New system architecture and technologies iImcC

Technical Whitepaper

imc Learning Suite

parto Scheer:

New system architecture and technologies

Author(s): Christoph Gast, Martin Mehlmann

Date: 2021-01-25

I

Version
Status (Draft / Review / Finalisation)

Contact Person(s)

ILS14.8.0/14.8.1
Finalisation

Christoph Gast

e P S

2017-11-20 Draft
2020-10-02 Review
2021-01-25 Review
2021-01-25 Finalisation

imc

information multimedia communication AG
Headquarter Saarbriicken

Scheer Tower, Uni-Campus Nord

D-66123 Saarbriicken

T. +49 681 9476-0 | Fax -530
info@im-c.com

im-c.com

Christoph Gast
Christoph Gast
Christoph Gast, Martin Mehlmann

Dr. Peter Zonnchen

Page 2

imc AG - Technical Whitepaper | New system architecture and technologies

Content

|

1 Introduction

2 System Architecture

2.1 Microservices

2.2 Containerisation

2.3 Communication

2.4 Configuration Management
2.5 System Deployment

2.6 Scalability and Load balancing
2.7 Centralized logging

—_
oOwNurag »

11
13
13

Page 3

imc AG - Technical Whitepaper | New system architecture and technologies iImcC

1 Introduction

In recent years, Agile development, Cloud hosting, DevOps, Continuous integration
and Continuous deployment have become increasingly important. As a result, a
particular software architecture called "Microservices" has emerged as
particularly suitable for complex web applications. The use of a Microservices
architecture makes it possible to fulfill all the important requirements of a modern
system such as performance, reliability, security, scalability, and speed of
innovation at the same time. For this reason, imc AG decided to develop its
Learning Management System (LMS) based on such an architecture starting with
the release of version 14.8.0.0.

This document describes the various aspects of this architecture and provides an
overview of the technologies used to implement it. The target audience of this
document are decision-makers and IT professionals responsible for evaluating
and establishing an LMS in their organization. The focus is on demonstrating the
advantages of such an architecture from the customer's point of view, without
going into too much technical detail.

Page 4

imc AG - Technical Whitepaper | New system architecture and technologies iImcC

parto Scheer:

2 System Architecture

Monolithic Microservices

Architecture Architecture

. Y
Application Monolith Gateway

b -

User Interface
BL:;S"'II.ESS AEEEETES - ™, - ™, - ™,
ogic i
Layer
Microservice Microservice Microservice

R R

Database Database Database

D;ata-baée
Fig. 2.1: System architecture
2.1 Microservices

Until version 14.8.0.0, the LMS was implemented as a monolithic application. A monolithic
application is self-contained and independent of other applications. It provides the entire
functionality of the system and performs all required tasks by itself. The advantage of a mono-
lithic application is its independence, meaning it can be deployed as a single unit.

As the size and complexity of the application grows, however, this independence turns out to be
a hindrance rather than a help. The program code, that may consist of hundreds of thousands of
lines is often located in a single repository and becomes hard to manage. A great discipline is
necessary to ensure a modular structure. Even the smallest change to some part of the
application requires the whole application to be rebuilt and redeployed. This is error prone,
tedious and time consuming. In addition, a monolithic architecture can cause a release to be
postponed because implementation on a particular part of the application is not yet complete,
whereas all other parts are.

Page 5

imc AG - Technical Whitepaper | New system architecture and technologies iImcC

parto Scheer

These facts slow down the speed of innovation and lead to a state where the system is becoming
more error-prone over time. For this reason, imc AG has decided to change its architecture to a
modern microservices architecture. Even if this means a large investment, we are convinced that
this will provide our customers with the best possible software solution for their needs.

Microservices are an architecture pattern in which the overall system is composed of a set of
independent services that communicate with each other using language-independent pro-
gramming interfaces. The services are largely decoupled and each service performs a well
defined small task. The fundamental idea of a Microservice is about doing one thing and doing
that one thing well. In this way, Microservices enable a modular structure of application software.
A Microservices architecture yields a number of distinct benefits:

— The complexity of a single service is small and easily manageable. This reduces the
probability of implementation errors and ensures high quality software.

— Each service is developed independently of all other services. Since the dependencies to
other services are kept small, a service can usually be released as soon as it is completed.
This clearly improves speed of innovation.

— A service can be deployed independently. As soon as a new version of a service is available, it
can replace an older version of the same service, even in a running system. This leads to
faster releases which can be deployed with less or even zero downtime.

— The interfaces of the services are based on proven technologies such as REST and
asynchronous message passing. At imc AG, these interfaces are defined by a dedicated team
of experienced experts to ensure reliable, high-performance communication and to prevent
unwanted dependencies which often arise in monolithic applications.

— Microservices can be scaled automatically, dynamically and independently of each other. By
setting up replicas, that is, multiple instances of the same service, it is possible to balance the
load and to keep the system robust even if one instance of a service fails. This leads to better
performance and fault tolerance.

— By using containers and systems for container orchestration, such as Kubernetes, the usage
of resources is automatically adapted to the respective circumstances at all times. This leads
to optimal resource utilization and cost savings.

— imc AG mainly serves large customers who have tens of thousands of users. By using
microservices, it is now possible to compose a system individually from the available set of
services, each of them implementing a specific feature domain. This enables new pricing
models, as services can be sold independently and the basic system can be offered at a
lower price, making it attractive and affordable for smaller customers as well.

Page 6

imc AG - Technical Whitepaper | New system architecture and technologies iImcC

parto Scheer:

Of course, there are also drawbacks to using a microservices architecture:

— Since microservices are a distributed architecture, they exhibit all the problems that come
with distributed architectures in general such as increased complexity, data consistency and
the need for sophisticated error handling. Since our software developers are trained
accordingly, we are convinced that we can handle the increased complexity safely.

— A microservices architecture generally requires more resources than a monolithic application,
especially if containers are used. However, nowadays, hardware is usually no longer the
limiting factor. In addition, systems for container orchestration ensure that only the resources
that are actually needed are used.

— The deployment of a microservices architecture is more challenging than that of a monolithic
application. For this reason, imc AG provides its on-premise customers with deployment
packages for different target platforms, which are largely self-contained. The hosting of cloud
systems at imc is done by an experienced team of engineers.

. . .
2.2 Containerisation
App App App App
Binaries / Libraries Binaries / Libraries App App
Operating System Operating System . i i L X X
Binaries / Libraries | Binaries / Libraries
App App App Virtual Machine Virtual Machine Container Container
Binaries / Libraries Hypervisor Container Runtime
Operating System Operating System Operating System
Hardware Hardware Hardware
Bare Metal Traditional Virtualization Containerization
Fig. 2.2: Containerisation

Containerization is a form of operating system virtualization where applications are run in
isolated software environments called "containers". A container is essentially a fully packaged
computing environment that bundles the application, its dependencies and its configuration in a
single "container image". Multiple containers can be run an the same shared operating system
using a Containerization software such as Docker.

Page 7

https://www.docker.com/

imc AG - Technical Whitepaper | New system architecture and technologies iImcC

parto Scheer

The container itself is abstracted from the operation system with only limited access to the
underlaying resources. As a result, the containerized application can be run an various types of
infrastructure, on bare metal, within virtual machines, and in the Cloud - whithout the need to
adapt it for each environment.

Since the 14.8.0.0 release, the LMS can be deployed as a set of containerimages. These container
images are started together to form an isolated network of containers where a defined set of
ports can be made accessible to the host system. Containers work especially well for a
microservices architecture where each service and all it's depencencies are bundled within a
single container image.

Containerization provides a lot of benefits:

— Portability between different platform. Docker containers can run nearly anywhere, on
virtualized infrastructures as well as on bare metal servers. They can be deployed in the
Cloud or on any self hosted machine running Linux or Microsoft Windows.

— Improved security by isolating applications from the host system and from each other.

— Fast and easy install, upgrade, and rollback processes using a container orchestration
software like Kubernetes.

— Scalability and replication on container/microservices level. This enables performant and
highly available system deployments.

— Flexible routing between services that are natively supported by containerisation platforms.

Due to these advantages, we recommend deploying the LMS in a containerized environment if
possible. Of course, we still support the option to deploy the new microservices architecture in a
non-containerized environment. Starting with 14.8.0.0, we provide a Microsoft Windows
deployment package with each release that is fully self-contained. Besides the WAR files that are
required to run the services, it contains a Tomcat servlet container, a Java runtime environment
and maintenance scripts to install and maintain the deployment as a set of Microsoft Windows
Services.

Page 8

//jira.im-c.de/confluence/kubernetes.io/

imc AG - Technical Whitepaper | New system architecture and technologies iImcC

parto Scheer:

2.3 Communication
| Gateway |
/ | Seniice | \
ra Y F Y
[dentity
Microservice Microservice Management ———— 'féder{?f'
Service F'rn:?xrr;c:;r
LS - b ey ‘
| Event Bus |
synchronous
\ Service Composition / ssynchronous

Fig. 2.3: Communication

With regard to communication, we distinguish between external and internal communication.
Within the system, microservices communicate either synchronously via HTTP or through
asynchronous messages using a message bus. The Event Bus is based on Active MQ Artemis.
Whether synchronous or asynchronous communication is used depends on the respective use
case.

From the outside, the system can by default only be reached via a single HTTPS port. All
incomming request are handled by a dedicated microservice, the Gateway service. For each
request, the Gateway will check and verify a JWT that serves to authenticate the user. It will then
pass on incomming request to the correspondig service using a set of routing rules thereby acting
as a reverse proxy. The Gateway is based on Netflix Zuul.

In case the Gateway receives a request without a valid JWT, it will forward that request to the
Identity Management Service (IDM). The IDM supports various authentication methods to
authenticate the user. On success, it will issue a JWT containing some basic information about
the user as payload. For browser based clients, the JWT will be stored as cookie so that every
further request will pass the Gateway and reach the services within the composition. The LMS
provides a comprehensive REST API, which is accessible from the outside via the gateway.
However, access to most endpoints requires authentication.

Gateway service and IDM are both core services that are part of every deployment.

Page 9

https://activemq.apache.org/components/artemis/
https://jwt.io/
https://github.com/Netflix/zuul

imc AG - Technical Whitepaper | New system architecture and technologies iImcC

parto Scheer

2.4 Configuration Management

Configuration Management can be split into startup configuration and runtime configuration.

T

Microservice

b y
' "
External Git _ _
Repository — Ccmﬂg Server — Microservice
b y
' "

Microservice

\ Service Composition /

Fig. 2.4: Startup configuration

Startup configuration includes everything necessary for the system to boot up properly in the
desired initial system state. This part of the configuration is processed at system startup and
does not change at runtime. In case startup configuration must be changed, a system restart is
required. Startup configuration is done via configuration files using an external, centralized
approach.

External means that the configuration is not part of the build artifacts, but lives outside of them.
This separation makes it possible to change the configuration of a service without having to
rebuild its binaries.

Centralized means that there is a dedicated service, the Config Server that is part of every
deployment and serves the configuration for all other services via a REST API. Please note that
this results in a startup dependency. When starting the system, all services wait for the Config
Server to be available in order to configure themselves before the startup. The Config Server is
based on Spring Cloud Config Server. The actual configuration files may reside in various
backends, e.g. in a Git repository, on a web server, or on a local or a mounted file system.
Runtime configuration in contrast includes anything else, that is, all configuration settings that
must not be available at system startup. Runtime configuration is done using the Ul of the Config
Manager in the ILS service. The changes made there at runtime are stored in the ILS database.
All other services use an internal REST API endpoint to poll their runtime configuration at regular
short intervals in order to apply it.

Page 10

https://cloud.spring.io/spring-cloud-config/reference/html/

imc AG - Technical Whitepaper | New system architecture and technologies iImcC

parto Scheer:

Please note that the separation into startup and runtime configuration described above is largely
but not yet fully implemented. This means that there are still values in configuration files that
would be better kept in the database in order to be able to change them without a system restart
required. Nevertheless, we will have this split fully implemented in the near future.

2.5 System Deployment

For on promise customers, the LMS can be installed as microservices on different platforms. The
best option from our point of view is to deploy in a container environment due to the advantages
mentioned above. We also provide deployment packages for installation on a bare metal machine
running a Microsoft Windows operation system. We don't provide a deployment package for a
bare metal Linux at the moment.

Our continuous pipeline automatically builds artifacts for every service that we offer. This are
usually WAR files for Java backend services that are based on Spring boot and can either be run
in a Tomcat Servlet Container or as standalone applications. For frontend services, the artifacts
are minimized compressed archives containing JavaScript sources and other assets, that can be
extracted on a simple webserver. Besides the artifacts, the pipeline also builds Docker images for
every service. They are hosted in our internal Docker registry and will be pushed to AWS ECR or
any other Container registry in case of a new release to make them available to customers.

443
Port Mapping

{8443 }

‘ Gateway ‘

-
Microsenice Microservice
ContainerContainer

e Y

\\.

B

—| Database

Config Server

S Pa—
Config File System Config
Files ‘ Mount Files

Container)
S d

\ Container Runtime /

Fig. 2.5: Container Deployment

Page 11

https://spring.io/projects/spring-boot
https://aws.amazon.com/de/ecr/

imc AG - Technical Whitepaper | New system architecture and technologies iImcC

parto Scheer:

For a containerized deployment, we provide Docker images in AWS ECR customer specific
namespaces. Please note that there may also be multiple images for a single service, e.g. for
backend, frontend and even database. These images can be pulled by a customer after
successfull login. In addition, we provide the startup configuration files as a compressed archive
together with a docker-compose.yml file that shows how to the services are composed together.
Of course, detailed documentation is also included in the package.

Gateway

—— Config Server

Microsermvice
— |

Microsermnice Cun:ﬂg
— Files

Microservice . , |
Tomcat Server | Database

\ Windows Deployment /

Fig. 2.6: Windows Deployment

For bare metal Microsoft Windows deployments, we provide a package that contains everything
to install and maintain the system. This includes a hardened Tomcat servlet container, artifacts
of all services, a Java runtime environment, configuration files, maintenance scripts and detailled
documentation. Most of the service artifacts are deployed in Tomcat, however there are two
exceptions, the Gateway and the Config Server are provided as standalone spring boot
applications. Tomcat, Gateway and Config Server are registered as Microsoft Windows services
during installation of the system to enable automated startup on Microsoft Windows startup and
the option to stop and start these services via the Microsoft windows services manager.

For cloud customers we offer a variety of deployment options. Please contact our hosting experts
so that they can assess your requirements and find the best possible solution for you. In
particular, deployment on Kubenetes allows a variety of options for customizing and fine-tuning.

Page 12

imc AG - Technical Whitepaper | New system architecture and technologies iImcC

parto Scheer

2.6 Scalability and Load balancing

When it comes to load balancing and fail safe operation of a containerized deployment,
Kubernetes comes with multiple ways how to achieve that, for instance by setting up replicas of
containers and by using the Kubenetes Ingress controller. In addition to Kubernetes built-in load
ballancing, many cloud providers offer container load balancing services with provider-dependent
capabilities. We refer the reader to the documentation of the container orchestration platform
and the cloud provider for more information. In general, for containerized deployments, there is
wide range of load balancing solutions available on the market. The main advantage of a
containerized deployment with respect to load ballancing is the fact, that it is possible to scale
individual containers and therefore services dynamically and automatically. That leads to higly
performant systems that adapt themselfes according to ressource needs.

For a Windows deployment, scaling of individual services, that run as contexts in Tomcat servlet
container is not supported. Instead, the system can only be scaled by setting up replicas of the
whole system. That is, two deployments are run in parallel and a server that supports load
ballancing, e.g. Microsoft IIS is put in front of them. This form of scaling is fixed and does not
adapt itself as long as there is no additional scaling software involved.

There are some peculiarities that need to be considered if the LMS is to be operated in a cluster
mode with multiple replicas:

— The LMS is not stateless and uses web sessions to identify the current user. Due to that,
Session affinity needs to be enabled on the Load balancer.

— The LMS does not store files as binary blobs in the database but as regular files in a
dedicated "data" directory in the file system instead. This directory must be shared among all
replicas by using networks drives for bare metal Microsoft Windows deployments or shared
cloud file storage services, like Azure Files or AWS EFS for containerized deployments.

2.7 Centralized logging

For bare metal Microsoft Windows deployments, all logfiles can be found in a subfolder of the
installation folder.

For containerized deployments, logging happens within the individual containers. As soon as a
container is undeployed e.g. by the orchestration software, logfiles for that container are no
longer available. To enable persisitency for logfiles, our architecture offers the possibility to
collect the console output and all log files of every service in a central location. This task is
performed by a dedicated service, the Logging Service. The Logging service includes an
Elasticsearch instance for log file aggregation and a Kibana instance for logfile visualisation and
analysis. Together with Logstash, which is a small application that is part of every service image,
centralized logging is realized.

Page 13

https://www.iis.net/
https://aws.amazon.com/efs/
https://www.elastic.co/
https://www.elastic.co/de/kibana
https://www.elastic.co/de/logstash

