imc

rartof SCheer

T

imc Learning Suite
Neue Systemarchitektur und Technologien

im-c.com

imc AG - Technical Whitepaper | Neue Systemarchitektur und Technologien iImcC

Technical Whitepaper

imc Learning Suite

parto Scheer:

Neue Systemarchtitektur und Technologien

Autor(en): Christoph Gast, Martin Mehlmann

Datum: 25.01.2021

Version
Status (Entwurf / Uberpriifung / Finalisierung)

Kontaktperson(en)

14.8.0/14.8.1
Finalisierung

Christoph Gast

20.11.2017 Entwurf

02.10.2020 Uberpriifung
25.01.2021 Uberpriifung
25.01.2021 Finalisierung

imc

information multimedia communication AG
Hauptsitz Saarbriicken

Scheer Tower, Uni-Campus Nord

D-66123 Saarbriicken

T. +49 681 9476-0 | Fax -530
info@im-c.com

im-c.com

Christoph Gast
Christoph Gast
Christoph Gast, Martin Mehlmann

Dr. Peter Zonnchen

Seite 2

https://jira.im-c.de/confluence/display/~lia.ghita
https://jira.im-c.de/confluence/display/~lia.ghita
https://jira.im-c.de/confluence/display/~lia.ghita

imc AG - Technical Whitepaper | Neue Systemarchitektur und Technologien

Inhalt

2.1
2.2
2.3
2.4
2.5
2.6
2.7

Einleitung

Systemarchitektur
Microservices

Containerisierung
Kommunikation
Konfigurationsmanagement
Systembereitstellung
Skalierbarkeit und Lastausgleich
Zentralisierte Protokollierung

N o

O

11
13
14

Seite 3

imc AG - Technical Whitepaper | Neue Systemarchitektur und Technologien iImcC

1 Einleitung

In den letzten Jahren haben agile Entwicklung, Cloud-Hosting, DevOps, Continuous
Integration und Continuous Deployment zunehmend an Bedeutung gewonnen.
Infolgedessen hat sich eine bestimmte Softwarearchitektur namens "Micro-
services" als besonders geeignet fiir komplexe Webanwendungen heraus-
kristallisiert. Durch den Einsatz einer Microservices-Architektur ist es moglich, alle
wichtigen Anforderungen an ein modernes System wie Performance, Zuverlas-
sigkeit, Sicherheit, Skalierbarkeit und Innovationsgeschwindigkeit gleichzeitig zu
erfillen. Aus diesem Grund hat sich die imc AG entschieden, ihr Learning
Management System (LMS) ab dem Release der Version 14.8.0.0 auf Basis einer
solchen Architektur zu entwickeln.

Das vorliegende Dokument beschreibt die verschiedenen Aspekte dieser Archi-
tektur und gibt einen Uberblick tiber die zur Umsetzung verwendeten Techno-
logien. Die Zielgruppe dieses Dokuments sind Entscheidungstrager und IT-
Fachleute, die fir die Evaluierung und Einrichtung eines LMS in ihrer Organisation
verantwortlich sind. Der Schwerpunkt liegt darauf, die Vorteile einer solchen
Architektur aus Sicht des Kunden aufzuzeigen, ohne dabei zu sehr ins technische
Detail zu gehen.

Seite 4

imc AG - Technical Whitepaper | Neue Systemarchitektur und Technologien iImcC

parto Scheer:

2 Systemarchitektur

Monolithic Microservices

Architecture Architecture

. Y
Application Monolith Gateway

b -

User Interface
BL:;S"'II.ESS AEEEETES - ™, - ™, - ™,
ogic i
Layer
Microservice Microservice Microservice

R R

Database Database Database

Database

Abb. 2.1: Systemarchitektur

2.1 Microservices

Bis zur Version 14.8.0.0 war das LMS als monolithische Anwendung implementiert. Eine
monolithische Anwendung ist in sich geschlossen und unabhangig von anderen Anwendungen.
Sie stellt die gesamte Funktionalitdat des Systems zur Verfligung und fihrt alle erforderlichen
Aufgaben selbstandig aus. Der Vorteil einer monolithischen Anwendung ist ihre Unabhangigkeit,
d. h. sie kann als eine einzige Einheit eingesetzt werden.

Mit zunehmender GrolRe und Komplexitat der Anwendung erweist sich diese Unabhangigkeit
jedoch eher als Hindernis denn als Hilfe. Der Programmcode, der aus Hunderttausenden von
Zeilen bestehen kann, befindet sich oft in einem einzigen Repository und ist schwer zu verwalten.
Es ist eine groRe Disziplin erforderlich, um eine modulare Struktur zu gewahrleisten. Selbst die
kleinste Anderung an einem Teil der Anwendung erfordert, dass die gesamte Anwendung neu
erstellt und eingesetzt wird. Dies ist fehleranfallig, miihsam und zeitaufwendig. Darliber hinaus
kann eine monolithische Architektur dazu fiihren, dass ein Release verschoben wird, wegeigig

imc AG - Technical Whitepaper | Neue Systemarchitektur und Technologien iImcC

parto Scheer

Implementierung an einem bestimmten Teil der Anwendung noch nicht abgeschlossen ist, alle
anderen Teile aber schon.

Diese Tatsachen verlangsamen die Innovationsgeschwindigkeit und fiihren zu einem Zustand, in
dem das System mit der Zeit immer fehleranfalliger wird. Aus diesem Grund hat sich die imc AG
entschieden, ihre Architektur auf eine moderne Microservices-Architektur umzustellen. Auch
wenn dies eine grole Investition bedeutet, sind wir davon lberzeugt, dass wir unseren Kunden
damit die bestmdgliche Softwareldsung fir ihre Bedirfnisse bieten.

Microservices sind ein Architekturmuster, bei dem das Gesamtsystem aus einer Menge von
unabhangigen Diensten besteht, die Uber sprachunabhdngige Programmierschnittstellen
miteinander kommunizieren. Die Dienste sind weitgehend entkoppelt und jeder Dienst fiihrt eine
wohldefinierte kleine Aufgabe aus. Der Grundgedanke eines Microservices besteht darin, eine
Sache zu tun und diese eine Sache gut zu machen. Auf diese Weise ermdglichen Microservices
einen modularen Aufbau von Anwendungssoftware. Eine Microservices-Architektur bringt eine
Reihe von deutlichen Vorteilen mit sich:

Die Komplexitat eines einzelnen Dienstes ist gering und leicht Uberschaubar. Dies reduziert
die Wahrscheinlichkeit von Implementierungsfehlern und gewahrleistet eine hohe Qualitat der
Software.

Jeder Dienst wird unabhangig von allen anderen Diensten entwickelt. Da die Abhangigkeiten
zu anderen Diensten gering gehalten werden, kann ein Dienst in der Regel freigegeben
werden, sobald er fertiggestellt ist. Dies verbessert die Innovationsgeschwindigkeit deutlich.

Ein Dienst kann unabhangig bereitgestellt werden. Sobald eine neue Version eines Dienstes
verfligbar ist, kann sie eine édltere Version desselben Dienstes ersetzen, auch in einem
laufenden System. Dies fiihrt zu schnelleren Releases, die mit weniger oder sogar ohne
Ausfallzeit bereitgestellt werden konnen.

Die Schnittstellen der Services basieren auf bewahrten Technologien wie REST und
asynchronem Message Passing. Bei der imc AG werden diese Schnittstellen von einem
engagierten Team erfahrener Experten definiert, um eine zuverldssige und performante
Kommunikation zu gewabhrleisten und unerwiinschte Abhangigkeiten zu vermeiden, die bei
monolithischen Anwendungen oft entstehen.

Microservices konnen automatisch, dynamisch und unabhangig voneinander skaliert werden.
Durch das Einrichten von Replikaten, also mehreren Instanzen desselben Dienstes, ist es
moglich, die Last auszugleichen und das System robust zu halten, auch wenn eine Instanz
eines Dienstes ausfallt. Dies flihrt zu einer besseren Leistung und Fehlertoleranz.

Durch den Einsatz von Containern und Systemen zur Container-Orchestrierung, wie z. B.
Kubernetes, wird die Nutzung der Ressourcen jederzeit automatisch an die jeweiligen
Gegebenheiten angepasst. Dies flihrt zu einer optimalen Ressourcenauslastung und
Kosteneinsparungen.

Seite 6

imc AG - Technical Whitepaper | Neue Systemarchitektur und Technologien iImcC

parto Scheer:

Die imc AG bedient vor allem grofRe Kunden mit mehreren zehntausend Nutzern. Durch den
Einsatz von Microservices ist es nun moglich, aus der Menge der verfiigbaren Services ein
System individuell zusammenzustellen, wobei jeder dieser Services eine bestimmte
Funktionsdoméane implementiert. Dies ermdglicht neue Preismodelle, da die Services
unabhangig voneinander verkauft werden kénnen und das Basissystem zu einem niedrigeren
Preis angeboten werden kann, was es auch fir kleinere Kunden attraktiv und erschwinglich
macht.

Naturlich gibt es auch Nachteile bei der Verwendung einer Microservices-Architektur:

Da Microservices eine verteilte Architektur sind, weisen sie alle Probleme auf, die mit
verteilten Architekturen im Allgemeinen einhergehen, wie z. B. erh6hte Komplexitat,
Datenkonsistenz und die Notwendigkeit einer ausgefeilten Fehlerbehandlung. Da unsere
Softwareentwickler entsprechend geschult sind, sind wir davon liberzeugt, dass wir die
erhohte Komplexitat sicher handhaben konnen.

Eine Microservices-Architektur bendétigt in der Regel mehr Ressourcen als eine monolithische
Anwendung, insbesondere wenn Container eingesetzt werden. Allerdings ist die Hardware
heutzutage meist nicht mehr der limitierende Faktor. Zudem sorgen Systeme zur Container-
Orchestrierung dafiir, dass nur die Ressourcen genutzt werden, die tatsachlich bendétigt
werden.

Das Deployment einer Microservices-Architektur ist anspruchsvoller als das einer
monolithischen Anwendung. Aus diesem Grund stellt die imc AG ihren On-Premise-Kunden
Deployment-Pakete fiir verschiedene Zielplattformen zur Verfligung, die weitgehend in sich
geschlossen sind. Das Hosting von Cloud-Systemen wird bei imc von einem erfahrenen Team
von Ingenieuren durchgefiihrt.

. o o
2.2 Containerisierung
App App App App
Binaries / Libraries Binaries / Libraries App App
Operating System Operating System
Binaries / Libraries ‘ | Binaries / Libraries
App App App Virtual Machine Virtual Machine Container Container
Binaries / Libraries Hypervisor Caontainer Runtime
Operating System Operating System Operating System
Hardware Hardware Hardware
Bare Metal Traditional Virtualization Containerization

Abb. 2.2: Containerisierung
Seite 7

imc AG - Technical Whitepaper | Neue Systemarchitektur und Technologien iImcC

parto Scheer

Containerisierung ist eine Form der Betriebssystemvirtualisierung, bei der Anwendungen in
isolierten Softwareumgebungen, den sogenannten "Containern®, ausgefiihrt werden. Ein
Container ist im Wesentlichen eine vollstandig verpackte Datenverarbeitungsumgebung, die die
Anwendung, ihre Abhéangigkeiten und ihre Konfiguration in einem einzigen "Container-image"
bindelt. Mit Hilfe einer Containerisierungssoftware wie Docker konnen mehrere Container auf
demselben gemeinsamen Betriebssystem ausgeflihrt werden.

Der Container selbst ist vom Betriebssystem abstrahiert und hat nur begrenzten Zugriff auf die
darunter liegenden Ressourcen. Dadurch kann die containerisierte Anwendung in verschiedenen
Infrastrukturen betrieben werden, auf Bare Metal, in virtuellen Maschinen und in der Cloud - ohne
dass sie fiir jede Umgebung angepasst werden muss.

Seit dem Release 14.8.0.0 kann das LMS als ein Satz von Container-Images bereitgestellt werden.
Diese Container-Images werden zusammen gestartet, um ein isoliertes Netzwerk von Containern
zu bilden, in dem ein definierter Satz von Ports fiir das Host-System zugéanglich gemacht werden
kann. Container eignen sich besonders gut fiir eine Microservices-Architektur, bei der jeder Dienst
und alle seine Abhangigkeiten in einem einzigen Container-Image gebiindelt sind.

Die Containerisierung bietet eine Menge von Vorteilen:

Portabilitat zwischen verschiedenen Plattformen. Docker-Container kdnnen fast iberall
ausgefiihrt werden, sowohl auf virtualisierten Infrastrukturen als auch auf Bare-Metal-Servern.
Sie kénnen in der Cloud oder auf jeder selbst gehosteten Maschine mit Linux oder Microsoft
Windows eingesetzt werden.

Verbesserte Sicherheit durch Isolierung der Anwendungen vom Hostsystem und voneinander.

Schnelle und einfache Installations-, Upgrade- und Rollback-Prozesse mit einer Container-
Orchestrierungssoftware wie Kubernetes.

Skalierbarkeit und Replikation auf Container-/Microservices-Ebene. Dies ermdglicht
performante und hochverfiigbare Systemimplementierungen.

Flexibles Routing zwischen Diensten, die nativ von Containerisierungsplattformen unterstiitzt
werden.

Aufgrund dieser Vorteile empfehlen wir, das LMS nach Mdglichkeit in einer containerisierten
Umgebung zu betreiben. Naturlich unterstiitzen wir weiterhin die Option, die neue Microservices-
Architektur in einer nicht containerisierten Umgebung einzusetzen. Beginnend mit 14.8.0.0 stellen
wir mit jeder Version ein Microsoft Windows Deployment-Paket zur Verfiigung, das vollstandig in
sich geschlossen ist. Neben den WAR-Dateien, die fiir die Ausfiihrung der Dienste erforderlich
sind, enthalt es einen Tomcat-Servlet-Container, eine Java-Laufzeitumgebung und Wartungs-
skripte zur Installation und Wartung der Bereitstellung als Satz von Microsoft Windows-Diensten.

Seite 8

imc AG - Technical Whitepaper | Neue Systemarchitektur und Technologien iImcC

parto Scheer:

2.3 Kommunikation
| Gateway |
/ | Service | \
r Y Fa -
Identity

Microservice Microservice Management — {— ©xemal

Semvice Identity

., S \ J Frovider

| |

|~ Event Bus |

k Service Composition /

Abb. 2.3: Kommunikation.

synchronous

asynchronous

In Bezug auf die Kommunikation wird zwischen externer und interner Kommunikation unter-
schieden. Innerhalb des Systems kommunizieren die Microservices entweder synchron tber
HTTP oder durch asynchrone Nachrichten lber einen Message Bus. Der Event-Bus basiert auf
Active MQ Artemis. Ob synchrone oder asynchrone Kommunikation verwendet wird, hangt vom
jeweiligen Anwendungsfall ab.

Von auBen ist das System standardmaRig nur tiber einen einzigen HTTPS-Port zu erreichen. Alle
eintreffenden Anfragen werden von einem dedizierten Microservice, dem Gateway-Dienst,
bearbeitet. Bei jeder Anfrage priift und verifiziert das Gateway ein JWT, das zur Authentifizierung
des Benutzers dient. AnschlieBend leitet er die eingehenden Anfragen an den entsprechenden
Dienst weiter, wobei er eine Reihe von Routing-Regeln verwendet und somit als Reverse-Proxy
fungiert. Das Gateway basiert auf Netflix Zuul.

Falls das Gateway eine Anfrage ohne giiltiges JWT erhalt, leitet es diese Anfrage an den Identity
Management Service (IDM) weiter. Der IDM unterstiitzt verschiedene Authentifizierungs-
methoden, um den Benutzer zu authentifizieren. Bei Erfolg gibt er ein JWT aus, das einige
grundlegende Informationen Uber den Benutzer als Nutzdaten enthalt. Fiir browserbasierte
Clients wird das JWT als Cookie gespeichert, so dass jede weitere Anfrage das Gateway passiert
und die Dienste innerhalb der Komposition erreicht. Das LMS stellt eine umfangreiche REST-API
zur Verfligung, die von aullen liber das Gateway zuganglich ist. Der Zugriff auf die meisten
Endpunkte erfordert jedoch eine Authentifizierung.

Gateway-Dienst und IDM sind beides Kerndienste, die Teil jeder Bereitstellung sind.
Seite 9

https://activemq.apache.org/components/artemis/
https://jwt.io/
https://github.com/Netflix/zuul

imc AG - Technical Whitepaper | Neue Systemarchitektur und Technologien iImcC

parto Scheer

2.4 Konfigurationsmanagement

T

Microservice

e A
' .
External Git _ _
Repository — Config Server —— Microservice
e A
' .

Microservice

\ Service Composition /

Abb. 2.4: Startkonfiguration.

Die Startkonfiguration umfasst alles, was notwendig ist, damit das System ordnungsgemaR im
gewilnschten anfanglichen Systemzustand hochfahrt. Dieser Teil der Konfiguration wird beim
Systemstart verarbeitet und andert sich nicht zur Laufzeit. Falls die Startup-Konfiguration
geandert werden muss, ist ein Neustart des Systems erforderlich. Die Startup-Konfiguration
erfolgt Uber Konfigurationsdateien mit einem externen, zentralisierten Ansatz.

Extern bedeutet, dass die Konfiguration nicht Teil der Build-Artefakte ist, sondern auerhalb von
ihnen lebt. Durch diese Trennung ist es moglich, die Konfiguration eines Dienstes zu andern, ohne
dessen Binardateien neu erstellen zu missen.

Zentralisiert bedeutet, dass es einen dedizierten Dienst gibt, den Config Server, der Teil jedes
Deployments ist und die Konfiguration fiir alle anderen Dienste liber eine REST-API bereitstellt.
Bitte beachten Sie, dass dies zu einer Startabhangigkeit flihrt. Beim Starten des Systems warten
alle Dienste darauf, dass der Config Server verfligbar ist, um sich vor dem Start zu konfigurieren.
Der Config Server basiert auf dem Spring Cloud Config Server. Die eigentlichen Konfigurations-
dateien konnen in verschiedenen Backends liegen, z. B. in einem Git-Repository, auf einem
Webserver oder auf einem lokalen oder einem gemounteten Dateisystem.

Die Laufzeitkonfiguration hingegen umfasst alles andere, also alle Konfigurationseinstellungen,
die beim Systemstart nicht verfligbar sein missen. Die Laufzeitkonfiguration wird Uber die
Benutzeroberflache des Config-Managers im ILS-Dienst vorgenommen. Die dort zur Laufzeit
vorgenommenen Anderungen werden in der ILS-Datenbank gespeichert. Alle anderen Dienste
verwenden einen internen REST-API-Endpunkt, um ihre Laufzeitkonfiguration in regelmaRigen
kurzen Abstanden abzufragen, um sie anzuwenden.

Seite 10

https://cloud.spring.io/spring-cloud-config/reference/html/

imc AG - Technical Whitepaper | Neue Systemarchitektur und Technologien iImcC

parto Scheer

Bitte beachten Sie, dass die oben beschriebene Trennung in Startup- und Runtime-Konfiguration
weitgehend, aber noch nicht vollstandig umgesetzt ist. Das bedeutet, dass es immer noch Werte
in den Konfigurationsdateien gibt, die besser in der Datenbank gehalten werden sollten, um sie
andern zu koénnen, ohne dass ein Systemneustart erforderlich ist. Dennoch werden wir diese
Aufteilung in naher Zukunft vollstandig implementiert haben.

2.5 Systembereitstellung

Fir On-Premise-Kunden kann das LMS als Microservices auf verschiedenen Plattformen
installiert werden. Die beste Option aus unserer Sicht ist die Bereitstellung in einer Container-
Umgebung aufgrund der oben genannten Vorteile. Wir bieten auch Deployment-Pakete fiir die
Installation auf einer Bare-Metal-Maschine mit einem Microsoft Windows-Betriebssystem an. Ein
Deployment-Paket fiir ein Bare-Metal-Linux stellen wir derzeit nicht zur Verfiigung.

Unsere kontinuierliche Pipeline erstellt automatisch Artefakte fiir jeden Service, den wir anbieten.
Dies sind in der Regel WAR-Dateien fiir Java-Backend-Dienste, die auf Spring boot basieren und
entweder in einem Tomcat Servlet Container oder als eigenstandige Anwendungen ausgefiihrt
werden konnen. Fir Frontend-Dienste sind die Artefakte minimierte, komprimierte Archive mit
JavaScript-Quellen und anderen Assets, die auf einem einfachen Webserver extrahiert werden
konnen. Neben den Artefakten baut die Pipeline auch Docker-Images fiir jeden Dienst. Diese
werden in unserer internen Docker-Registry gehostet und im Falle eines neuen Releases in die
AWS ECR oder eine andere Container-Registry gepusht, um sie den Kunden zur Verfligung zu
stellen.

L 443]
Port Mapping

N

[8443 §

‘ Gateway

Container

P

rl-f):‘;tab ééér)

Config Server

£~ m—
Config File System Config

Files ‘ Mount Files

Container

)

\ Container Runtime /

Abb. 2.5: Container-Bereitstellung.

Seite 11

https://spring.io/projects/spring-boot
https://aws.amazon.com/de/ecr/

imc AG - Technical Whitepaper | Neue Systemarchitektur und Technologien iImcC

parto Scheer

Fir eine containerisierte Bereitstellung stellen wir Docker-Images in kundenspezifischen AWS
ECR-Namespaces bereit. Bitte beachten Sie, dass es auch mehrere Images fir einen einzelnen
Service geben kann, z. B. fiir Backend, Frontend und sogar Datenbank. Diese Images konnen von
einem Kunden nach erfolgreicher Anmeldung gezogen werden. Zusatzlich liefern wir die
Startkonfigurationsdateien als komprimiertes Archiv zusammen mit einer docker-compose.yml-
Datei, die zeigt, wie die Dienste zusammengesetzt werden. Natirlich ist auch eine ausfihrliche
Dokumentation im Paket enthalten.

Gateway

—— Config Server

Microsermvice
— |

Microsermnice Cun:ﬂg
— Files

Microservice , |
Tomcat Server | Database

\ Windows Deployment /

Abb. 2.6: Windows-Bereitstellung.

Fir Bare-Metal-Implementierungen unter Microsoft Windows stellen wir ein Paket bereit, das alles
enthalt, was zur Installation und Wartung des Systems erforderlich ist. Dazu gehdren ein
abgeharteter Tomcat-Servlet-Container, Artefakte aller Dienste, eine Java-Laufzeitumgebung,
Konfigurationsdateien, Wartungsskripte und eine ausfiihrliche Dokumentation. Die meisten
Service-Artefakte werden in Tomcat bereitgestellt, es gibt jedoch zwei Ausnahmen, das Gateway
und der Config Server werden als eigenstandige Spring-Boot-Anwendungen bereitgestellt.
Tomcat, Gateway und Config Server werden bei der Installation des Systems als Microsoft
Windows-Dienste registriert, um einen automatischen Start beim Hochfahren von Microsoft
Windows zu ermdglichen und die Mdglichkeit zu haben, diese Dienste Gber den Microsoft
Windows Services Manager zu stoppen und zu starten.

Fir Cloud-Kunden bieten wir eine Vielzahl von Bereitstellungsoptionen an. Bitte kontaktieren Sie
unsere Hosting-Experten, damit sie lhre Anforderungen einschatzen und die bestmaogliche
Losung fir Sie finden konnen. Insbesondere die Bereitstellung auf Kubenetes ermdglicht eine
Vielzahl von Optionen zur Anpassung und Feinabstimmung.

Seite 12

imc AG - Technical Whitepaper | Neue Systemarchitektur und Technologien iImcC

parto Scheer

2.6 Skalierbarkeit und Lastausgleich

Wenn es um den Lastausgleich und den ausfallsicheren Betrieb einer containerisierten
Bereitstellung geht, bietet Kubernetes mehrere Moglichkeiten, dies zu erreichen, z. B. durch das
Einrichten von Replikaten von Containern und durch die Verwendung des Kubernetes-Ingress-
Controllers. Neben dem in Kubernetes integrierten Lastausgleichs bieten viele Cloud-Provider
Container-Lastausgleich-Dienste mit providerabhangigen Fahigkeiten an. Wir verweisen den
Leser auf die Dokumentation der Container-Orchestrierungsplattform und des Cloud-Anbieters
fur weitere Informationen. Im Allgemeinen gibt es fiir containerisierte Bereitstellungen eine grol3e
Auswahl an Lastausgleich-Losungen auf dem Markt. Der Hauptvorteil einer containerisierten
Bereitstellung in Bezug auf Lastausgleich ist die Tatsache, dass es moglich ist, einzelne Container
und damit Dienste dynamisch und automatisch zu skalieren. Das fiihrt zu hochperformanten
Systemen, die sich je nach Ressourcenbedarf anpassen.

Bei einem Windows-Einsatz wird die Skalierung einzelner Dienste, die als Kontexte im Tomcat-
Servlet-Container laufen, nicht unterstitzt. Stattdessen kann das System nur skaliert werden,
indem Replikate des gesamten Systems eingerichtet werden. Das heillt, es werden zwei
Bereitstellungen parallel betrieben und ihnen ein Server vorgeschaltet, der Lastausgleich
unterstitzt, z. B. Microsoft IIS. Diese Form der Skalierung ist fix und passt sich nicht an, solange
keine zusatzliche Skalierungssoftware im Spiel ist.

Soll das LMS in einem Cluster-Modus mit mehreren Replikaten betrieben werden, sind einige
Besonderheiten zu beachten:

Das LMS ist nicht zustandslos und verwendet Web-Sessions, um den aktuellen Benutzer zu
identifizieren. Daher muss auf dem Load Balancer die Session-Affinitat aktiviert werden.

Das LMS speichert Dateien nicht als binare Blobs in der Datenbank, sondern als regulare
Dateien in einem eigenen Verzeichnis "data" im Dateisystem. Dieses Verzeichnis muss von
allen Replikaten gemeinsam genutzt werden, indem Netzlaufwerke fiir Bare-Metal-
Bereitstellungen von Microsoft Windows oder gemeinsam genutzte Cloud-
Dateispeicherdienste wie Azure Files oder AWS EFS fiir containerisierte Bereitstellungen
verwendet werden.

Seite 13

https://www.iis.net/
https://aws.amazon.com/efs/

imc AG - Technical Whitepaper | Neue Systemarchitektur und Technologien iImcC

parto Scheer

2.7 Zentralisierte Protokollierung

Bei Bare-Metal-Bereitstellungen von Microsoft Windows befinden sich alle Protokolldateien in
einem Unterordner des Installationsordners.

Bei containerisierten Bereitstellungen erfolgt die Protokollierung innerhalb der einzelnen
Container. Sobald ein Container z. B. von der Orchestrierungssoftware nicht mehr bereitgestellt
wird, sind die Protokolldateien fiir diesen Container nicht mehr verfiigbar. Um die Persistenz der
Logfiles zu ermdglichen, bietet unsere Architektur die Moglichkeit, die Konsolenausgabe und alle
Logfiles jedes Dienstes an einem zentralen Ort zu sammeln. Diese Aufgabe wird von einem
dedizierten Dienst, dem Logging Service, ibernommen. Der Logging Service beinhaltet eine
Elasticsearch -Instanz zur Aggregation der Logdateien und eine Kibana-Instanz zur Visualisierung
und Analyse der Logdateien. Zusammen mit Logstash, einer kleinen Anwendung, die Teil jedes
Service-lImages ist, wird das zentralisierte Logging realisiert.

Seite 14

https://www.elastic.co/
https://www.elastic.co/de/kibana
https://www.elastic.co/de/logstash

