

im-c.com

Technical
Whitepaper

imc Learning Suite
New system architecture and technologies

Page 2

imc AG – Technical Whitepaper | New system architecture and technologies

Technical Whitepaper

imc Learning Suite
New system architecture and technologies

Author(s): Martin Mehlmann
Date: 2022-07-13

Document Description

Version 14.13

Status (Draft / Review / Finalisation) Finalisation

Contact Person(s) Product Management Team

History Status Who

2021-01-25 Draft Martin Mehlmann

2022-03-21 Review Eric Andre

2022-07-12 Review Andreas Pohl

2022-07-13 Finalisation Dr. Peter Zönnchen

imc
information multimedia communication AG
Headquarter Saarbrücken
Scheer Tower, Uni-Campus Nord
D-66123 Saarbrücken
T. +49 681 9476-0 | Fax -530
info@im-c.com
im-c.com

Page 3

imc AG – Technical Whitepaper | New system architecture and technologies

Content

1 Introduction 4

2 System Architecture 5

2.1 Microservices 5

2.2 Containerisation 7

2.3 Communication 9

2.4 Configuration Management 9

2.5 System Deployment 11

2.6 Scalability and Load balancing 12

2.7 Centralized logging 13

Page 4

imc AG – Technical Whitepaper | New system architecture and technologies

1 Introduction

In recent years, Agile development, Cloud hosting, DevOps, Continuous integration
and Continuous deployment have become increasingly important. As a result, a
particular software architecture called "Microservices" has emerged as particu-
larly suitable for complex web applications. The use of a Microservices architec-
ture makes it possible to fulfill all the important requirements of a modern system
such as performance, reliability, security, scalability, and speed of innovation at the
same time. For this reason, imc AG decided to develop its Learning Management
System (LMS) based on such an architecture starting with the release of version
14.8.0.0.

This document describes the various aspects of this architecture and provides an
overview of the technologies used to implement it. The target audience of this
document are decision-makers and IT professionals responsible for evaluating
and establishing an LMS in their organization. The focus is on demonstrating the
advantages of such an architecture from the customer's point of view, without go-
ing into too much technical detail.

Page 5

imc AG – Technical Whitepaper | New system architecture and technologies

2 System Architecture

Fig. 2.1: System architecture

2.1 Microservices

Until version 14.8.0.0, the LMS was implemented as a monolithic application. A monolithic appli-

cation is self-contained and independent of other applications. It provides the entire functionality

of the system and performs all required tasks by itself. The advantage of a monolithic application

is its independence, meaning it can be deployed as a single unit.

As the size and complexity of the application grows, however, this independence turns out to be

a hindrance rather than a help. The program code, that may consist of hundreds of thousands of

lines is often located in a single repository and becomes hard to manage. A great discipline is

necessary to ensure a modular structure. Even the smallest change to some part of the applica-

tion requires the whole application to be rebuilt and redeployed. This is error prone, tedious and

time consuming. In addition, a monolithic architecture can cause a release to be postponed be-

cause implementation on a particular part of the application is not yet complete, whereas all other

parts are.

Page 6

imc AG – Technical Whitepaper | New system architecture and technologies

These facts slow down the speed of innovation and lead to a state where the system is becoming

more error-prone over time. For this reason, imc AG has decided to change its architecture to a

modern microservices architecture. Even if this means a large investment, we are convinced that

this will provide our customers with the best possible software solution for their needs.

Microservices are an architecture pattern in which the overall system is composed of a set of

independent services that communicate with each other using language-independent program-

ming interfaces. The services are largely decoupled and each service performs a well defined

small task. The fundamental idea of a Microservice is about doing one thing and doing that one

thing well. In this way, Microservices enable a modular structure of application software. A Mi-

croservices architecture yields a number of distinct benefits:

– The complexity of a single service is small and easily manageable. This reduces the probabil-

ity of implementation errors and ensures high quality software.

– Each service is developed independently of all other services. Since the dependencies to

other services are kept small, a service can usually be released as soon as it is completed.

This clearly improves speed of innovation.

– A service can be deployed independently. As soon as a new version of a service is available, it

can replace an older version of the same service, even in a running system. This leads to

faster releases which can be deployed with less or even zero downtime.

– The interfaces of the services are based on proven technologies such as REST and asynchro-

nous message passing. At imc AG, these interfaces are defined by a dedicated team of expe-

rienced experts to ensure reliable, high-performance communication and to prevent unwanted

dependencies which often arise in monolithic applications.

– Microservices can be scaled automatically, dynamically and independently of each other. By

setting up replicas, that is, multiple instances of the same service, it is possible to balance the

load and to keep the system robust even if one instance of a service fails. This leads to better

performance and fault tolerance.

– By using containers and systems for container orchestration, such as Kubernetes, the usage

of resources is automatically adapted to the respective circumstances at all times. This leads

to optimal resource utilization and cost savings.

– imc AG mainly serves large customers who have tens of thousands of users. By using micro-

services, it is now possible to compose a system individually from the available set of ser-

vices, each of them implementing a specific feature domain. This enables new pricing mod-

els, as services can be sold independently and the basic system can be offered at a lower

price, making it attractive and affordable for smaller customers as well.

Page 7

imc AG – Technical Whitepaper | New system architecture and technologies

Of course, there are also drawbacks to using a microservices architecture:

– Since microservices are a distributed architecture, they exhibit all the problems that come

with distributed architectures in general such as increased complexity, data consistency and

the need for sophisticated error handling. Since our software developers are trained accord-

ingly, we are convinced that we can handle the increased complexity safely.

– A microservices architecture generally requires more resources than a monolithic application,

especially if containers are used. However, nowadays, hardware is usually no longer the limit-

ing factor. In addition, systems for container orchestration ensure that only the resources that

are actually needed are used.

– The deployment of a microservices architecture is more challenging than that of a monolithic

application. For this reason, imc AG provides its on-premise customers with deployment

packages for different target platforms, which are largely self-contained. The hosting of cloud

systems at imc is done by an experienced team of engineers.

2.2 Containerisation

Fig. 2.2: Containerisation

Containerization is a form of operating system virtualization where applications are run in iso-

lated software environments called "containers". A container is essentially a fully packaged com-

puting environment that bundles the application, its dependencies and its configuration in a single

"container image". Multiple containers can be run an the same shared operating system using a

Containerization software such as Docker.

https://www.docker.com/

Page 8

imc AG – Technical Whitepaper | New system architecture and technologies

The container itself is abstracted from the operation system with only limited access to the un-

derlaying resources. As a result, the containerized application can be run an various types of in-

frastructure, on bare metal, within virtual machines, and in the Cloud - whithout the need to adapt

it for each environment.

Since the 14.8.0.0 release, the LMS can be deployed as a set of container images. These container

images are started together to form an isolated network of containers where a defined set of

ports can be made accessible to the host system. Containers work especially well for a micro-

services architecture where each service and all it's depencencies are bundled within a single

container image.

Containerization provides a lot of benefits:

– Portability between different platform. Docker containers can run nearly anywhere, on virtual-

ized infrastructures as well as on bare metal servers. They can be deployed in the Cloud or on

any self hosted machine running Linux or Microsoft Windows.

– Improved security by isolating applications from the host system and from each other.

– Fast and easy install, upgrade, and rollback processes using a container orchestration soft-

ware like Kubernetes.

– Scalability and replication on container/microservices level. This enables performant and

highly available system deployments.

– Flexible routing between services that are natively supported by containerisation platforms.

Due to these advantages, we recommend deploying the LMS in a containerized environment if

possible. Of course, we still support the option to deploy the new microservices architecture in a

non-containerized environment. Starting with 14.8.0.0, we provide a Microsoft Windows deploy-

ment package with each release that is fully self-contained. Besides the WAR files that are re-

quired to run the services, it contains a Tomcat servlet container, a Java runtime environment and

maintenance scripts to install and maintain the deployment as a set of Microsoft Windows Ser-

vices.

//jira.im-c.de/confluence/kubernetes.io/

Page 9

imc AG – Technical Whitepaper | New system architecture and technologies

2.3 Communication

Fig. 2.3: Communication

With regard to communication, we distinguish between external and internal communication.

Within the system, microservices communicate either synchronously via HTTP or through asyn-

chronous messages using a message bus. Whether synchronous or asynchronous communica-

tion is used depends on the respective use case.

From the outside, the system can by default only be reached via a single HTTPS port. All incom-

ming request are handled by a dedicated microservice, the Gateway service. For each request,

the Gateway will check and verify a JWT that serves to authenticate the user. It will then pass on

incomming request to the correspondig service using a set of routing rules thereby acting as a

reverse proxy. The Gateway is based on Netflix Zuul.

In case the Gateway receives a request without a valid JWT, it will forward that request to the

Identity Management Service (IDM). The IDM supports various authentication methods to authen-

ticate the user. On success, it will issue a JWT containing some basic information about the user

as payload. For browser based clients, the JWT will be stored as cookie so that every further

request will pass the Gateway and reach the services within the composition. The LMS provides

a comprehensive REST API, which is accessible from the outside via the gateway. However, ac-

cess to most endpoints requires authentication.

Gateway service and IDM are both core services that are part of every deployment.

2.4 Configuration Management

Configuration Management can be split into startup configuration and runtime configuration.

https://jwt.io/
https://github.com/Netflix/zuul

Page 10

imc AG – Technical Whitepaper | New system architecture and technologies

Fig. 2.4: Startup configuration

Startup configuration includes everything necessary for the system to boot up properly in the

desired initial system state. This part of the configuration is processed at system startup and

does not change at runtime. In case startup configuration must be changed, a system restart is

required. Startup configuration is done via configuration files using an external, centralized ap-

proach.

External means that the configuration is not part of the build artifacts, but lives outside of them.

This separation makes it possible to change the configuration of a service without having to re-

build its binaries.

Centralized means that there is a dedicated service, the Config Server that is part of every deploy-

ment and serves the configuration for all other services via a REST API. Please note that this

results in a startup dependency. When starting the system, all services wait for the Config Server

to be available in order to configure themselves before the startup. The Config Server is based on

Spring Cloud Config Server. The actual configuration files may reside in various backends, e.g. in

a Git repository, on a web server, or on a local or a mounted file system.

Runtime configuration in contrast includes anything else, that is, all configuration settings that

must not be available at system startup. Runtime configuration is done using the UI of the Config

Manager in the ILS service. The changes made there at runtime are stored in the ILS database.

All other services use an internal REST API endpoint to poll their runtime configuration at regular

short intervals in order to apply it.

Please note that the separation into startup and runtime configuration described above is largely

but not yet fully implemented. This means that there are still values in configuration files that

https://cloud.spring.io/spring-cloud-config/reference/html/

Page 11

imc AG – Technical Whitepaper | New system architecture and technologies

would be better kept in the database in order to be able to change them without a system restart

required. Nevertheless, we will have this split fully implemented in the near future.

2.5 System Deployment

For “on-premise” customers, the LMS can be installed as microservices on different platforms.

The best option from our point of view is to deploy in a container environment due to the ad-

vantages mentioned above. We also provide deployment packages for installation on a bare

metal machine running a Microsoft Windows operation system. We don't provide a deployment

package for a bare metal Linux at the moment.

Our continuous pipeline automatically builds artifacts for every service that we offer. This are

usually WAR files for Java backend services that are based on Spring boot and can either be run

in a Tomcat Servlet Container or as standalone applications. For frontend services, the artifacts

are minimized compressed archives containing JavaScript sources and other assets, that can be

extracted on a simple webserver. Besides the artifacts, the pipeline also builds Docker images for

every service. They are hosted in our internal Docker registry and will be pushed to AWS ECR or

any other Container registry in case of a new release to make them available to customers.

Fig. 2.5: Container Deployment

https://spring.io/projects/spring-boot
https://aws.amazon.com/de/ecr/

Page 12

imc AG – Technical Whitepaper | New system architecture and technologies

For a containerized deployment, we provide Docker images in AWS ECR customer specific

namespaces. Please note that there may also be multiple images for a single service, e.g. for

backend, frontend and even database. These images can be pulled by a customer after success-

full login. In addition, we provide the startup configuration files as a compressed archive together

with a docker-compose.yml file that shows how to the services are composed together. Of

course, detailed documentation is also included in the package.

Fig. 2.6: Windows Deployment

For bare metal Microsoft Windows deployments, we provide a package that contains everything

to install and maintain the system. This includes a hardened Tomcat servlet container, artifacts

of all services, a Java runtime environment, configuration files, maintenance scripts and detailled

documentation. Most of the service artifacts are deployed in Tomcat, however there are two ex-

ceptions, the Gateway and the Config Server are provided as standalone spring boot applications.

Tomcat, Gateway and Config Server are registered as Microsoft Windows services during instal-

lation of the system to enable automated startup on Microsoft Windows startup and the option

to stop and start these services via the Microsoft windows services manager.

For cloud customers we offer a variety of deployment options. Please contact our hosting experts

so that they can assess your requirements and find the best possible solution for you. In particu-

lar, deployment on Kubenetes allows a variety of options for customizing and fine-tuning.

2.6 Scalability and Load balancing

When it comes to load balancing and fail safe operation of a containerized deployment, Kuber-

netes comes with multiple ways how to achieve that, for instance by setting up replicas of

Page 13

imc AG – Technical Whitepaper | New system architecture and technologies

containers and by using the Kubenetes Ingress controller. In addition to Kubernetes built-in load

ballancing, many cloud providers offer container load balancing services with provider-dependent

capabilities. We refer the reader to the documentation of the container orchestration platform

and the cloud provider for more information. In general, for containerized deployments, there is

wide range of load balancing solutions available on the market. The main advantage of a contain-

erized deployment with respect to load ballancing is the fact, that it is possible to scale individual

containers and therefore services dynamically and automatically. That leads to higly performant

systems that adapt themselfes according to ressource needs.

For a Windows deployment, scaling of individual services, that run as contexts in Tomcat servlet

container is not supported. Instead, the system can only be scaled by setting up replicas of the

whole system. That is, two deployments are run in parallel and a server that supports load bal-

lancing, e.g. Microsoft IIS is put in front of them. This form of scaling is fixed and does not adapt

itself as long as there is no additional scaling software involved.

There are some peculiarities that need to be considered if the LMS is to be operated in a cluster

mode with multiple replicas:

– The LMS is not stateless and uses web sessions to identify the current user. Due to that, Ses-

sion affinity needs to be enabled on the Load balancer.

– The LMS does not store files as binary blobs in the database but as regular files in a dedi-

cated "data" directory in the file system instead. This directory must be shared among all rep-

licas by using networks drives for bare metal Microsoft Windows deployments or shared

cloud file storage services, like Azure Files or AWS EFS for containerized deployments.

2.7 Centralized logging

For bare metal Microsoft Windows deployments, all logfiles can be found in a subfolder of the

installation folder.

For containerized deployments, logging happens within the individual containers. As soon as a

container is undeployed e.g. by the orchestration software, logfiles for that container are no

longer available. To enable persisitency for logfiles, our architecture offers the possibility to col-

lect the console output and all log files of every service in a central location. This task is per-

formed by a dedicated service, the Logging Service. The Logging service includes an Elas-

ticsearch instance for log file aggregation and a Kibana instance for logfile visualisation and anal-

ysis. Together with Logstash, which is a small application that is part of every service image,

centralized logging is realized.

https://www.iis.net/
https://aws.amazon.com/efs/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/de/kibana
https://www.elastic.co/de/logstash

