

LMS
Installation Guide
(k8s)

imc Learning Suite

Page 2

imc AG – LMS Installation Guide (k8s)

LMS Installation Guide (k8s)

Author: Malte Zieseniß

Document Description

Version 1.1

Status (Draft / Review / Finalisation) Final

Contact person(s) Malte Zieseniß

History Status Who

27.09.2024 Draft Malte Zieseniß

02.10.2024 Review Roman Muth

02.10.2024 Final Roman Muth

16.10.2024 Validation/Test Raffael Willems

Page 3

imc AG – LMS Installation Guide (k8s)

Content

1 Introduction 4

2 Prerequisites 5

2.1 System Requirements Whitepaper 5

2.2 Additional Requirements 5

2.3 Necessary Tools and Configurations 6

2.4 Helpful Tools 6

2.5 Delivery 7

3 Deployment Steps 8

3.1 Preparing the YAML Files 8

3.2 Configuration 14

3.3 Deploying LMS Services and Components 16

4 Testing & Validation 17

5 After the Installation 18

imc
information multimedia communication AG
Headquarters Saarbrücken
Scheer Tower, Uni-Campus Nord
D-66123 Saarbrücken
T. +49 681 9476-0 | Fax -530
info@im-c.com
im-c.com

Page 4

imc AG – LMS Installation Guide (k8s)

1 Introduction

This document outlines the steps required to set up the LMS software within an existing
Kubernetes environment. The structure will be the following:

• Initial Requirements: We'll begin by outlining the prerequisites for installation, including
what is provided by IMC.

• Deployment Steps: This section will guide you through configuring the necessary YAML
files and other settings, such as SSL certificates and ingress rules.

• Service Deployment: You'll then learn how to deploy the LMS services within your cluster.
• Testing and Validation: After deployment, testing and validation steps are crucial to

ensure the installation is successful.

• Post-Installation: Finally, we'll cover the actions required after the installation is complete.

The document is aimed at IT professionals who are commissioned to install the system.

Page 5

imc AG – LMS Installation Guide (k8s)

2 Prerequisites

2.1 System Requirements Whitepaper

To begin the installation of the LMS software, several prerequisites must be met. These are
detailed in the provided System Requirements whitepaper, which includes comprehensive
information on hardware and Kubernetes cluster specifications, required software versions,
database configuration, and more.

2.2 Additional Requirements

Before deploying the system, certain preliminary requirements must be addressed:
• Database Setup: The database is not included in the deployment and must be installed

and configured separately. Supported databases include Oracle, Microsoft SQL Server, or
PostgreSQL. Refer to the “Database Preparation” documentation for detailed setup
instructions.

• Storage Configuration: Adequate storage must be configured for the system. Content
storage should be on a remote shared storage system, such as NFS, EFS, or DFS.

• Ingress Configuration: An ingress is needed to expose HTTP and HTTPS routes from
outside the cluster to the services within it. This requires deploying an ingress controller
with SSL support, such as ingress-nginx. There are several Ingress controllers available
for you to choose from.

This is an example of a minimal ingress resource:

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 name: minimal-ingress

 annotations:

 nginx.ingress.kubernetes.io/rewrite-target: /

spec:

 ingressClassName: nginx-example

 rules:

 - http:

 paths:

 - path: /testpath

 pathType: Prefix

 backend:

 service:

 name: test

 port:

 number: 80

Page 6

imc AG – LMS Installation Guide (k8s)

2.3 Necessary Tools and Configurations

To install software on a Kubernetes cluster, a combination of tools and configurations is needed.
Here is a breakdown:

Essential Tools:

• Kubernetes CLI (kubectl): This is the primary tool for interacting with Kubernetes clusters. It

allows you to create, deploy, and manage resources like pods, deployments, and services.

• Container Runtime: A container runtime (like Docker, containerd, or CRI-O) is necessary to

execute containers within pods.

• Package Manager: A package manager (like Helm, Kustomize, or Ansible) can simplify the

management of complex Kubernetes applications.

Configurations:

• YAML Files: Kubernetes objects are defined using YAML files. These files describe the

desired state of the cluster, such as pods, deployments, services, and namespaces.

• Namespace: A namespace is a logical way to organize resources within a Kubernetes cluster.

It helps isolate different applications.

• Storage: If your application requires persistent storage, you will need to configure storage

classes and persistent volumes.

• Networking: Kubernetes provides a built-in network for communication between pods. You

may need to configure additional network policies or services for specific use cases.

2.4 Helpful Tools

Additional Considerations:

• Security: Follow security best practices, such as implementing Role-Based Access Control

(RBAC) to manage permissions and configuring network policies to control and restrict

communication between resources.

• Monitoring and Logging: Use monitoring tools to track the health of your applications and

set up logging to facilitate troubleshooting and diagnostics.

• CI/CD Integration: Integrate Kubernetes deployments into your CI/CD pipeline to enable

automated testing, continuous integration, and seamless deployment.

Page 7

imc AG – LMS Installation Guide (k8s)

2.5 Delivery

The LMS software is provided to you in a zipped download package with the following naming

convention:

LS_%CUSTOMER%%REVISION%.zip

• %CUSTOMER% will be replaced by the customer's name.

• %REVISION% will represent the patch level of the delivery.

The package contains two zip files:

1. kubernetes-%CUSTOMER%_%REVISION%.zip: This file contains a config folder with

default configuration files to set up your system. It may also include additional folders

with the prefix "config" for different environments (e.g., ref, stage, prod).

2. data.zip: This file includes all the binary files needed by LMS, such as images and

videos.

Additionally, the package includes a deployment.yaml file, which defines the desired state of a

Kubernetes deployment. This YAML file is used to create, update, or delete deployments in a

Kubernetes cluster. It specifies key details such as the number of replicas, pod specifications,

labels, and other settings needed for the deployment.

This is an example of a basic YAML deployment file:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: example-deployment

spec:

 replicas: 3

 selector:

 matchLabels:

 app: example

 template:

 metadata:

 labels:

 app: example

 spec:

 containers:

 - name: example-container

 image: example-image

 ports:

 - containerPort: 8080

Page 8

imc AG – LMS Installation Guide (k8s)

3 Deployment Steps

3.1 Preparing the YAML Files

Within the provided config folder in the package, you create an additional directory to store
persistent customer configurations (such as database passwords and other sensitive
information). This new directory needs to be named “config-override”. Any configurations placed
in this folder will take precedence over those in the default config folder.
To configure your database connection, create a new YAML file named application.yml in the
persistent config folder. You should enter your database connection details as illustrated below.
The first example demonstrates a PostgreSQL configuration, while the second is for Microsoft
SQL Server:

Another YAML file that needs to be configured is the one that defines the connection to your
storage. For example, you might name this file nfs-claims.yaml. In Kubernetes, storage is
managed through API resources called PersistentVolume (PV) and PersistentVolumeClaim
(PVC).

A PersistentVolume (PV) represents a provisioned storage resource in the cluster, such as an
NFS (Network File System). It defines the underlying storage implementation.

A PersistentVolumeClaim (PVC), on the other hand, is a request for storage by a user, similar to
how Pods request node resources. While Pods consume CPU and memory from nodes, PVCs
consume storage from PVs.

The following is an example YAML file for setting up NFS-based storage:

imc:

 database:

 username:

 password:

 usevault: false

 dbname: db

 host: 10.7.222.5

 url: "jdbc:postgresql://${imc.database.host}:5432/

 ${imc.database.dbname}?defaultRowFetchSize=500"

imc:

 database:

 host: srv.database.windows.net

 url: "jdbc:sqlserver://srv.database.windows.net;DatabaseName=db"

 username:

 password:

 usevault: false

Page 9

imc AG – LMS Installation Guide (k8s)

apiVersion: v1

kind: PersistentVolume

metadata:

 name: pv-data-%CUSTOMER%prod-nfs

spec:

 capacity:

 storage: 250Gi # Set to max available data of share

 accessModes:

 - ReadWriteMany

 persistentVolumeReclaimPolicy:

 mountOptions:

 - soft

 - nfsvers=4.1

 nfs:

 path: /%PATH_TO_SHARE%/data # path to share

 server: # IP/FQDN of NFS-Server

 readOnly: false

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: pvc-data-%CUSTOMER%prod-nfs

spec:

 storageClassName: ""

 accessModes:

 - ReadWriteMany

 resources:

 requests:

 storage: 250Gi

 volumeName: pv-data-%CUSTOMER%prod-nfs

 volumeMode: Filesystem

apiVersion: v1

kind: PersistentVolume

metadata:

 name: pv-config-%CUSTOMER%prod-nfs

spec:

 capacity:

 storage: 10Gi # Set to max available data of share

 accessModes:

 - ReadWriteMany

 persistentVolumeReclaimPolicy:

 mountOptions:

 - soft

 - nfsvers=4.1

 nfs:

 path: /%PATH_TO_SHARE%/config # path to share

 server: # IP/FQDN of NFS-Server

 readOnly: false

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: pvc-config-%CUSTOMER%prod-nfs

spec:

 storageClassName: ""

Page 10

imc AG – LMS Installation Guide (k8s)

 accessModes:

 - ReadWriteMany

 resources:

 requests:

 storage: 10Gi

 volumeName: pv-config-%CUSTOMER%prod-nfs

 volumeMode: Filesystem

apiVersion: v1

kind: PersistentVolume

metadata:

 name: pv-solr-%CUSTOMER%prod-nfs

spec:

 capacity:

 storage: 250Gi # Set to max available data of share

 accessModes:

 - ReadWriteMany

 persistentVolumeReclaimPolicy:

 mountOptions:

 - soft

 - nfsvers=4.1

 nfs:

 path: /%PATH_TO_SHARE%/solr # path to share

 server: # IP/FQDN of NFS-Server

 readOnly: false

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: pvc-solr-%CUSTOMER%prod-nfs

spec:

 storageClassName: ""

 accessModes:

 - ReadWriteMany

 resources:

 requests:

 storage: 10Gi

 volumeName: pv-solr-%CUSTOMER%prod-nfs

 volumeMode: Filesystem

As outlined in the YAML file, three specific directories must be set up on the NFS: config, data,
and solr. The config and data directories are already included in the delivered package, while
the solr directory, used for the Apache Solr search engine, needs to be created manually.
Additionally, within the solr directory, you must create a subdirectory called solrhome.

The paths to these directories are defined in the YAML file under the spec: section, specifically
within the nfs: block. Here, you will also specify the IP address or Fully Qualified Domain Name
(FQDN) of your NFS server.

The most important YAML file for the LMS installation is deployment.yaml, which is part of the
provided package and comes preconfigured. However, some manual adjustments are necessary
to ensure it works correctly in your environment. This file contains the specifications for all LMS
services that will be deployed.

As an example, we look at the config service:

Page 11

imc AG – LMS Installation Guide (k8s)

apiVersion: apps/v1

kind: Deployment

metadata:

 annotations:

 kompose.cmd: kompose convert

 kompose.version: 1.19.0 (f63a961c)

 creationTimestamp: null

 labels:

 io.kompose.service: config

 name: config

spec:

 replicas: 1

 selector:

 matchLabels:

 io.kompose.service: config

 strategy:

 type: Recreate

 template:

 metadata:

 annotations:

 kompose.cmd: kompose convert

 kompose.version: 1.19.0 (f63a961c)

 creationTimestamp: null

 labels:

 io.kompose.service: config

 spec:

 volumes:

 - name: configfileshare

 persistentVolumeClaim:

 claimName: pvc-config-%CUSTOMER%prod-nfs

 containers:

 - env:

 - name: SPRING_PROFILES_ACTIVE

 value: native

 - name: SPRING_CLOUD_CONFIG_SERVER_NATIVE_SEARCHLOCATIONS

 value: file:///config/,file:///config/config-override/

 - name: JAVA_OPTS

 value: -Dlog4j2.formatMsgNoLookups=true -

Xlog:gc=info,gc+init=info:file=/home/imc/learning-suite/instance/logs/gc-

%t.log:utc,u,pid,tags:filecount=10,filesize=100M

 image: 933991266655.dkr.ecr.eu-central-

1.amazonaws.com/customer/%CUSTOMER%/imc-ms-config-

server:%CUSTOMER%_%REVISION%

 imagePullPolicy: Always

 name: config

 ports:

 - containerPort: 8888

 resources:

 limits:

 memory: "512Mi"

 requests:

 memory: "512Mi"

 volumeMounts:

 - name: configfileshare

 mountPath: /config

 hostname: config

 imagePullSecrets:

Page 12

imc AG – LMS Installation Guide (k8s)

 - name: %CUSTOMER%cred

 restartPolicy: Always

status: {}

apiVersion: v1

kind: Service

metadata:

 annotations:

 kompose.cmd: kompose convert

 kompose.version: 1.19.0 (f63a961c)

 creationTimestamp: null

 labels:

 io.kompose.service: config

 name: config

spec:

 ports:

 - name: "8888"

 port: 8888

 targetPort: 8888

 sessionAffinity: ClientIP

 sessionAffinityConfig:

 clientIP:

 timeoutSeconds: 3600

 selector:

 io.kompose.service: config

status:

 loadBalancer: {}

For this service, ensure that the claimName: matches the name defined under metadata: in
the nfs-claims.yaml file. In this example, it should be pvc-config-%CUSTOMER%prod-nfs.
Additionally, the persistent folder you created in your config directory is referenced under
the SPRING_CLOUD_CONFIG_SERVER_NATIVE_SEARCHLOCATIONS environment variable. If
you didn’t use the default name config-override, be sure to update this variable with the correct
folder name.

There are two other services where you need to set the correct claimName::
• For the ils service, the standard value is pvc-data-%CUSTOMER%prod-nfs.
• For the solr service, the standard value is pvc-solr-%CUSTOMER%prod-nfs.

Page 13

imc AG – LMS Installation Guide (k8s)

Another YAML file you can configure at this point is ingress.yml. The ingress resource defines
traffic routing rules and exposes HTTP and HTTPS routes from outside the cluster. It can be set
up to provide externally accessible URLs for services, along with load balancing and SSL/TLS
configuration.
The following YAML file shows how an ingress resource can look like:

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 name: %CUSTOMER%

 namespace: %CUSTOMER%prod

 annotations:

 kubernetes.io/ingress.class: "ingress"

 cert-manager.io/cluster-issuer: "letsencrypt"

 nginx.ingress.kubernetes.io/affinity: cookie

 nginx.ingress.kubernetes.io/affinity-mode: persistent

 nginx.ingress.kubernetes.io/rewrite-target: /$1

 nginx.ingress.kubernetes.io/proxy-body-size: "3200m"

 nginx.ingress.kubernetes.io/proxy-connect-timeout: "3600"

 nginx.ingress.kubernetes.io/proxy-send-timeout: "3600"

 nginx.ingress.kubernetes.io/proxy-read-timeout: "3600"

 nginx.ingress.kubernetes.io/configuration-snippet: |

 if ($request_uri ~* \.(css|gif|jpe?g|png|woff|svg)) {

 expires 240m;

 add_header Cache-Control "public";

 }

 nginx.ingress.kubernetes.io/server-snippet: |

 gzip on;

 gzip_disable "msie6";

 gzip_vary on;

 gzip_proxied any;

 gzip_comp_level 6;

 gzip_buffers 16 8k;

 gzip_min_length 256;

 gzip_types

 application/atom+xml

 application/geo+json

 application/javascript

 application/x-javascript

 application/json

 application/ld+json

 application/manifest+json

 application/rdf+xml

 application/rss+xml

 application/xhtml+xml

 application/xml

 font/eot

 font/otf

 font/ttf

 image/svg+xml

 text/css

 text/javascript

 text/plain

 text/xml;

spec:

 tls:

Page 14

imc AG – LMS Installation Guide (k8s)

 - hosts:

 - %CUSTOMERURL%

 secretName: %CUSTOMER%-tls

 rules:

 - host: %CUSTOMERURL%

 http:

 paths:

 - path: /(.*)

 pathType: Prefix

 backend:

 service:

 name: gateway

 port:

 number: 8080

For hosts: and host: you should set your system URL and secretName: will refer to your
SSL certificate secrets. Don’t forget to enter the chosen namespace: of your system.

3.2 Configuration

Before deploying the LMS services in your cluster, additional configuration is required. To allow
your system to pull the images for the various LMS services from the IMC repository, you need to
create a secret. We provide the following YAML file to help you create this secret in your cluster:

apiVersion: v1

kind: Secret

metadata:

 name: %CUSTOMER%cred

 namespace: %CUSTOMER%prod

data:

 .dockercfg: >-

 %SECRET%

type: kubernetes.io/dockercfg

In the file, the placeholder %SECRET% needs to be replaced with your current secret value. To
make sure that the secret is renewed regularly, the following YAML file will also be provided to
you. It is called %CUSTOMER%-prod-token-recreation-CronJob.yaml:

apiVersion: v1

kind: ServiceAccount

metadata:

 name: tokencreator

automountServiceAccountToken: true

kind: RoleBinding

apiVersion: rbac.authorization.k8s.io/v1

metadata:

 name: tokencreator-admin

subjects:

 - kind: ServiceAccount

 name: tokencreator

Page 15

imc AG – LMS Installation Guide (k8s)

 namespace: %CUSTOMER%prod

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: admin

apiVersion: batch/v1

kind: CronJob

metadata:

 name: aws-registry-credential-cron

spec:

 schedule: "0 */4 * * *"

 successfulJobsHistoryLimit: 2

 failedJobsHistoryLimit: 2

 jobTemplate:

 spec:

 backoffLimit: 4

 template:

 spec:

 serviceAccountName: tokencreator

 terminationGracePeriodSeconds: 0

 restartPolicy: Never

 containers:

 - name: kubectl

 env:

 - name: AWS_ACCESS_KEY_ID

 value: AKIA5S5RXXFPZEYYP5ST

 - name: AWS_SECRET_ACCESS_KEY

 value: 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

 - name: AWS_DEFAULT_REGION

 value: eu-central-1

 imagePullPolicy: IfNotPresent

 image: 933991266655.dkr.ecr.eu-central-

1.amazonaws.com/ecmt/cronhelper:1.0.0

 command:

 - "/bin/sh"

 - "-c"

 - |

 AWS_ACCOUNT=933991266655

 AWS_REGION=eu-central-1

 SECRET_NAME=%CUSTOMER%cred

DOCKER_REGISTRY_SERVER=https://${AWS_ACCOUNT}.dkr.ecr.${AWS_REGION}.amazona

ws.com

 DOCKER_USER=AWS

 DOCKER_PASSWORD=`aws ecr get-login --region ${AWS_REGION} --

registry-ids ${AWS_ACCOUNT} | cut -d' ' -f6`

 kubectl delete secret $SECRET_NAME

 kubectl create secret docker-registry $SECRET_NAME --docker-

server=$DOCKER_REGISTRY_SERVER --docker-username=$DOCKER_USER --docker-

password=$DOCKER_PASSWORD --docker-email=no@email.local

 echo 'cronjob done'

 imagePullSecrets:

 - name: %CUSTOMER%cred

Page 16

imc AG – LMS Installation Guide (k8s)

When you deploy this YAML file in your cluster, it will create a CronJob named aws-registry-
credential-cron, which runs every four hours to automatically renew the secret.

Additionally, you can create SSL certificate secrets using the following command:

You need to use the secret name %CUSTOMER%-tls in your ingress YAML file to setup HTTPS
access for your URL.

3.3 Deploying LMS Services and Components

Before deploying the LMS services in your Kubernetes cluster, ensure that your database and
storage are properly set up, and that all YAML file configurations are complete. Once everything
is prepared, you can deploy the files step by step in your cluster using the following command:

Ideally, you should start with the nfs-claims.yaml so that your storage space is connected. Then
you can deploy your ingress.yml and deployment.yaml.

kubectl apply -f "%PATH_TO_FILES%\YAML" --namespace=%CUSTOMER%prod

kubectl create secret tls %CUSTOMER%-tls --namespace %CUSTOMER%prod
--key "%PATH_TO_FILES% \private.key" --cert "%PATH_TO_FILES% \certificate.crt"

Page 17

imc AG – LMS Installation Guide (k8s)

4 Testing & Validation

Once the LMS system is successfully deployed and configured, you can access your URL and
log in to perform testing and validation.

After logging in, click the magnifying glass icon in the top right corner to initiate a search. Type
“Licences” and select it from the results. This will take you to a new screen where you’ll see
several icons on the left side. Click the lowest icon, labeled "System info." A pop-up window will
display the system information, including the version and revision number, allowing you to verify
that the correct version was installed.

For another test, search for “Catalogues.” On the resulting screen, click the lowest icon on the
left side again to select “Update search index.” This will trigger the indexing process and
confirm that the Apache Solr search engine is functioning properly, as your catalogues will be
indexed.

Page 18

imc AG – LMS Installation Guide (k8s)

5 After the Installation

After the installation is complete, it's important to return any modified files from the delivery
package to IMC. This ensures that all changes are included in the next delivery and won't be lost
or require reconfiguration.
Typically, only the deployment.yaml file will have changes, and this file should be submitted in a
support ticket to IMC.

	Content
	1 Introduction
	2 Prerequisites
	2.1 System Requirements Whitepaper
	2.2 Additional Requirements
	2.3 Necessary Tools and Configurations
	2.4 Helpful Tools
	2.5 Delivery

	3 Deployment Steps
	3.1 Preparing the YAML Files
	3.2 Configuration
	3.3 Deploying LMS Services and Components

	4 Testing & Validation
	5 After the Installation

