imc

part of SCheer

im-c.com

imc AG - LMS Installation Guide (k8s) imc

mnx Scheer

LMS Installation Guide (k8s)

Author: Malte Ziesenil}

e - = B

Version 1.1
Status (Draft / Review / Finalisation) Final
Contact person(s) Malte Ziesenil}

I S LS

27.09.2024 Draft Malte Ziesenil}
02.10.2024 Review Roman Muth
02.10.2024 Final Roman Muth
16.10.2024 Validation/Test Raffael Willems

Page 2

imc AG - LMS Installation Guide (k8s) imc
wnx Scheer

Content

1 Introduction 4
2 Prerequisites 5
2.1 System Requirements Whitepaper 5
2.2 Additional Requirements 5
2.3 Necessary Tools and Configurations 6
2.4 Helpful Tools 6
2.5 Delivery 7
3 Deployment Steps 8
3.1 Preparing the YAML Files 8
3.2 Configuration 14
3.3 Deploying LMS Services and Components 16
4 Testing & Validation 17
5 After the Installation 18

imc

information multimedia communication AG
Headquarters Saarbriicken

Scheer Tower, Uni-Campus Nord

D-66123 Saarbriicken

T. +49 681 9476-0 | Fax -530

info@im-c.com

im-c.com Page 3

imc AG - LMS Installation Guide (k8s) imc

wnx Scheer

1 Introduction

This document outlines the steps required to set up the LMS software within an existing
Kubernetes environment. The structure will be the following:

¢ Initial Requirements: We'll begin by outlining the prerequisites for installation, including
what is provided by IMC.

¢ Deployment Steps: This section will guide you through configuring the necessary YAML
files and other settings, such as SSL certificates and ingress rules.

e Service Deployment: You'll then learn how to deploy the LMS services within your cluster.

e Testing and Validation: After deployment, testing and validation steps are crucial to
ensure the installation is successful.

¢ Post-Installation: Finally, we'll cover the actions required after the installation is complete.

The document is aimed at IT professionals who are commissioned to install the system.

Page 4

imc AG - LMS Installation Guide (k8s) imc

wnx Scheer

2 Prerequisites
2.1 System Requirements Whitepaper

To begin the installation of the LMS software, several prerequisites must be met. These are
detailed in the provided System Requirements whitepaper, which includes comprehensive
information on hardware and Kubernetes cluster specifications, required software versions,
database configuration, and more.

2.2 Additional Requirements

Before deploying the system, certain preliminary requirements must be addressed:

e Database Setup: The database is not included in the deployment and must be installed
and configured separately. Supported databases include Oracle, Microsoft SQL Server, or
PostgreSQL. Refer to the “Database Preparation” documentation for detailed setup
instructions.

e Storage Configuration: Adequate storage must be configured for the system. Content
storage should be on a remote shared storage system, such as NFS, EFS, or DFS.

¢ Ingress Configuration: An ingress is needed to expose HTTP and HTTPS routes from
outside the cluster to the services within it. This requires deploying an ingress controller
with SSL support, such as ingress-nginx. There are several Ingress controllers available
for you to choose from.

This is an example of a minimal ingress resource:

apiVersion: networking.k8s.io/vl
kind: Ingress
metadata:
name: minimal-ingress
annotations:
nginx.ingress.kubernetes.io/rewrite-target: /
spec:
ingressClassName: nginx-example
rules:
- http:
paths:
- path: /testpath
pathType: Prefix
backend:
service:
name: test
port:
number: 80

Page 5

imc AG - LMS Installation Guide (k8s) imc

wnx Scheer

2.3 Necessary Tools and Configurations

To install software on a Kubernetes cluster, a combination of tools and configurations is needed.
Here is a breakdown:

Essential Tools:

¢ Kubernetes CLI (kubectl): This is the primary tool for interacting with Kubernetes clusters. It
allows you to create, deploy, and manage resources like pods, deployments, and services.

e Container Runtime: A container runtime (like Docker, containerd, or CRI-0) is necessary to
execute containers within pods.

e Package Manager: A package manager (like Helm, Kustomize, or Ansible) can simplify the
management of complex Kubernetes applications.

Configurations:

e YAML Files: Kubernetes objects are defined using YAML files. These files describe the
desired state of the cluster, such as pods, deployments, services, and namespaces.

¢ Namespace: A namespace is a logical way to organize resources within a Kubernetes cluster.
It helps isolate different applications.

e Storage: If your application requires persistent storage, you will need to configure storage
classes and persistent volumes.

¢ Networking: Kubernetes provides a built-in network for communication between pods. You
may need to configure additional network policies or services for specific use cases.

2.4 Helpful Tools

Additional Considerations:

e Security: Follow security best practices, such as implementing Role-Based Access Control
(RBAC) to manage permissions and configuring network policies to control and restrict
communication between resources.

¢ Monitoring and Logging: Use monitoring tools to track the health of your applications and
set up logging to facilitate troubleshooting and diagnostics.

¢ CI/CD Integration: Integrate Kubernetes deployments into your CI/CD pipeline to enable
automated testing, continuous integration, and seamless deployment.

Page 6

imc AG - LMS Installation Guide (k8s) imc

wnx Scheer

2.5 Delivery

The LMS software is provided to you in a zipped download package with the following naming
convention:

LS_%CUSTOMER%%REVISION%.zip

e %CUSTOMER% will be replaced by the customer's name.
e %REVISION% will represent the patch level of the delivery.

The package contains two zip files:

1. kubernetes-%CUSTOMER%_%REVISION%.zip: This file contains a config folder with
default configuration files to set up your system. It may also include additional folders
with the prefix "config" for different environments (e.qg., ref, stage, prod).

2. data.zip: This file includes all the binary files needed by LMS, such as images and
videos.

Additionally, the package includes a deployment.yaml file, which defines the desired state of a
Kubernetes deployment. This YAML file is used to create, update, or delete deployments in a
Kubernetes cluster. It specifies key details such as the number of replicas, pod specifications,
labels, and other settings needed for the deployment.

This is an example of a basic YAML deployment file:

apiVersion: apps/vl
kind: Deployment
metadata:
name: example-deployment
spec:
replicas: 3
selector:
matchLabels:
app: example
template:
metadata:

labels:
app: example

spec:

containers:

- name: example-container
image: example-image
ports:

- containerPort: 8080

Page 7

imc AG - LMS Installation Guide (k8s) imc

wnx Scheer

3 Deployment Steps

3.1 Preparing the YAML Files

Within the provided config folder in the package, you create an additional directory to store
persistent customer configurations (such as database passwords and other sensitive
information). This new directory needs to be named “config-override”. Any configurations placed
in this folder will take precedence over those in the default config folder.

To configure your database connection, create a new YAML file named application.ymlin the
persistent config folder. You should enter your database connection details as illustrated below.
The first example demonstrates a PostgreSQL configuration, while the second is for Microsoft
SQL Server:

imc:
database:
username:
password:
usevault: false
dbname: db
host:
url: "jdbc:postgresqgl://${imc.database.host}:5432/
S{imc.database.dbname}?defaultRowFetchSize=500"
imc:
database:
host: srv.database.windows.net
url: "jdbc:sglserver://srv.database.windows.net;DatabaseName=db"
username:
password:
usevault: false

Another YAML file that needs to be configured is the one that defines the connection to your
storage. For example, you might name this file nfs-claims.yaml. In Kubernetes, storage is
managed through API resources called PersistentVolume (PV) and PersistentVolumeClaim
(PVC).

A PersistentVolume (PV) represents a provisioned storage resource in the cluster, such as an
NFS (Network File System). It defines the underlying storage implementation.

A PersistentVolumeClaim (PVC), on the other hand, is a request for storage by a user, similar to
how Pods request node resources. While Pods consume CPU and memory from nodes, PVCs
consume storage from PVs.

The following is an example YAML file for setting up NFS-based storage:

Page 8

imc AG — LMS Installation Guide (k8s)

imc

wnx Scheer

apiVersion: vl
kind: PersistentVolume

metadata:

name: pv-data-%CUSTOMER%prod-nfs

spec:

capacity:

storage: 250Gi # Set to max available data of share
accessModes:

- ReadWriteMany
persistentVolumeReclaimPolicy:
mountOptions:

- soft

- nfsvers=4.1

nfs:
path: /%PATH TO SHARE%/data # path to share

server: # IP/FQDN of NFS-Server
readOnly: false

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: pvc-data-%$CUSTOMERSprod-nfs
spec:
storageClassName:
accessModes:
- ReadWriteMany
resources:
requests:
storage: 250Gi
volumeName: pv-data-%$CUSTOMERS$prod-nfs
volumeMode: Filesystem

apiVersion: vl
kind: PersistentVolume
metadata:
name: pv-config-%CUSTOMERSprod-nfs
spec:
capacity:
storage: 10Gi # Set to max available data of share
accessModes:
- ReadWriteMany
persistentVolumeReclaimPolicy:
mountOptions:
- soft
- nfsvers=4.1
nfs:
path: /%PATH_TO_SHARES/config # path to share
server: # IP/FQDN of NFS-Server
readOnly: false

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: pvc-config-%$CUSTOMERSprod-nfs
spec:
storageClassName:

Page 9

imc AG - LMS Installation Guide (k8s) imc

wnx Scheer

accessModes:

- ReadWriteMany
resources:

requests:

storage: 10Gi
volumeName: pv-config-%$CUSTOMERSprod-nfs
volumeMode: Filesystem
apiVersion: vl
kind: PersistentVolume
metadata:
name: pv-s0lr-%CUSTOMER%prod-nfs
spec:
capacity:

storage: 250Gi # Set to max available data of share
accessModes:

- ReadWriteMany
persistentVolumeReclaimPolicy:
mountOptions:

- soft

- nfsvers=4.1
nfs:

path: /$PATH TO SHARES/solr # path to share

server: # IP/FQDN of NFS-Server

readOnly: false

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: pvc-solr-%CUSTOMER%prod-nfs
spec:
storageClassName:
accessModes:
- ReadWriteMany
resources:
requests:
storage: 10Gi
volumeName: pv-solr-$CUSTOMERS$prod-nfs
volumeMode: Filesystem

As outlined in the YAML file, three specific directories must be set up on the NFS: config, data,
and solr. The config and data directories are already included in the delivered package, while
the solr directory, used for the Apache Solr search engine, needs to be created manually.
Additionally, within the solr directory, you must create a subdirectory called solrhome.

The paths to these directories are defined in the YAML file under the spec: section, specifically
within the nfs : block. Here, you will also specify the IP address or Fully Qualified Domain Name

(FQDN) of your NFS server.
The most important YAML file for the LMS installation is deployment.yaml, which is part of the

provided package and comes preconfigured. However, some manual adjustments are necessary
to ensure it works correctly in your environment. This file contains the specifications for all LMS

services that will be deployed.

As an example, we look at the config service:

Page 10

imc AG - LMS Installation Guide (k8s) imc

mnx Scheer

apiVersion: apps/vl
kind: Deployment
metadata:
annotations:
kompose.cmd: kompose convert
kompose.version: 1.19.0 (f£63a96lc)
creationTimestamp: null
labels:
io.kompose.service: config
name: config
spec:
replicas:
selector:
matchLabels:
io.kompose.service: config
strategy:
type: Recreate
template:
metadata:
annotations:
kompose.cmd: kompose convert
kompose.version: 1.19.0 (f63a96lc)
creationTimestamp: null
labels:
io.kompose.service: config
spec:
volumes:
- name: configfileshare
persistentVolumeClaim:
claimName: pvc-config-%CUSTOMER%prod-nfs
containers:
- env:
- name: SPRING PROFILES ACTIVE
value: native
- name: SPRING CLOUD CONFIG SERVER NATIVE SEARCHLOCATIONS
value: file:///config/,file:///config/config-override/
- name: JAVA OPTS
value: -Dlog4j2.formatMsgNoLookups=true -
Xlog:gc=info,gc+init=info:file=/home/imc/learning-suite/instance/logs/gc-
$t.log:utc,u,pid, tags:filecount=10, filesize=100M
image: 933991266655.dkr.ecr.eu-central-
1l.amazonaws.com/customer/$CUSTOMERS/imc-ms-config-
server:$CUSTOMERS SREVISIONS%
imagePullPolicy: Always
name: config
ports:
- containerPort:
resources:
limits:
memory: "512Mi"
requests:
memory: "512Mi"
volumeMounts:
- name: configfileshare
mountPath: /config
hostname: config
imagePullSecrets:

Page 11

imc AG — LMS Installation Guide (k8s)

imc

wnx Scheer

- name: 3%CUSTOMERS%cred
restartPolicy: Always
status: {}
apiVersion: vl
kind: Service
metadata:
annotations:
kompose.cmd: kompose convert
kompose.version: 1.19.0 (£63a961lc)
creationTimestamp: null
labels:
io.kompose.service: config
name: config

spec:
ports:
- name: "8888"
port:
targetPort:

sessionAffinity: ClientIP
sessionAffinityConfig:
clientIP:
timeoutSeconds:
selector:
io.kompose.service: config
status:
loadBalancer: {}

For this service, ensure that the claimName: matches the name defined under metadata: in
the nfs-claims.yaml file. In this example, it should be pvc-config-%CUSTOMER$prod-nfs.
Additionally, the persistent folder you created in your config directory is referenced under
the SPRING_CLOUD_ CONFIG SERVER NATIVE SEARCHLOCATIONS environment variable. If
you didn’t use the default name config-override, be sure to update this variable with the correct

folder name.

There are two other services where you need to set the correct claimName::
o Fortheils service, the standard value is pve-data-%CUSTOMER%prod-nfs.
e For the solr service, the standard value is pve-solr-%$CUSTOMER%prod-nfs.

Page 12

imc AG - LMS Installation Guide (k8s) imc

wnx Scheer

Another YAML file you can configure at this point is ingress.yml. The ingress resource defines
traffic routing rules and exposes HTTP and HTTPS routes from outside the cluster. It can be set
up to provide externally accessible URLs for services, along with load balancing and SSL/TLS
configuration.

The following YAML file shows how an ingress resource can look like:

apiVersion: networking.k8s.io/vl
kind: Ingress
metadata:
name: 3CUSTOMERS
namespace: 3$CUSTOMER%prod
annotations:
kubernetes.io/ingress.class: "ingress"
cert-manager.io/cluster-issuer: "letsencrypt"
nginx.ingress.kubernetes.io/affinity: cookie
nginx.ingress.kubernetes.io/affinity-mode: persistent
nginx.ingress.kubernetes.io/rewrite-target: /$1
nginx.ingress.kubernetes.io/proxy-body-size: "3200m"
nginx.ingress.kubernetes.io/proxy-connect-timeout: "3600"
nginx.ingress.kubernetes.io/proxy-send-timeout: "3600"
nginx.ingress.kubernetes.io/proxy-read-timeout: "3600"
nginx.ingress.kubernetes.io/configuration-snippet: |
if (Srequest uri ~* \. (css|gif|jpe?glpng|woff|svg)) {
expires 240m;
add header Cache-Control "public";
}
nginx.ingress.kubernetes.io/server-snippet: |
gzip on;
gzip_disable "msie6";
gzip vary on;
gzip proxied any;
gzip comp_level 6;
gzip buffers 16 8k;
gzip min length 256;
gzip types
application/atom+xml
application/geo+json
application/javascript
application/x-javascript
application/json
application/ld+json
application/manifest+json
application/rdf+xml
application/rss+xml
application/xhtml+xml
application/xml
font/eot
font/otf
font/ttf
image/svg+xml
text/css
text/javascript
text/plain
text/xml;
spec:
tls:

Page 13

imc AG - LMS Installation Guide (k8s) imc

wnx Scheer

- hosts:
- $CUSTOMERURLS
secretName: $SCUSTOMER%-tls
rules:
- host: %CUSTOMERURLS%
http:

paths:

- path: /(.*)
pathType: Prefix
backend:

service:
name: gateway
port:
number:

For hosts: and host: you should set your system URL and secretName: will refer to your
SSL certificate secrets. Don't forget to enter the chosen namespace: of your system.

3.2 Configuration
Before deploying the LMS services in your cluster, additional configuration is required. To allow

your system to pull the images for the various LMS services from the IMC repository, you need to
create a secret. We provide the following YAML file to help you create this secret in your cluster:

apiVersion: vl
kind: Secret
metadata:
name: 3$CUSTOMERScred
namespace: $CUSTOMER%prod
data:
.dockercfg: >-
$SECRETS%
type: kubernetes.io/dockercfg

In the file, the placeholder $SECRET% needs to be replaced with your current secret value. To
make sure that the secret is renewed regularly, the following YAML file will also be provided to
you. Itis called %CUSTOMER%-prod-token-recreation-CronJob.yaml:

apiVersion: vl
kind: ServiceAccount
metadata:

name: tokencreator
automountServiceAccountToken: true
kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/vl
metadata:

name: tokencreator-admin
subjects:

- kind: ServiceAccount

name: tokencreator

Page 14

imc AG - LMS Installation Guide (k8s) imc

mnx Scheer

namespace: $CUSTOMERSprod
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: admin
apiVersion: batch/vl
kind: CronJob
metadata:
name: aws-registry-credential-cron
spec:
schedule: "0 */4 * * *"
successfulJobsHistoryLimit:
failedJobsHistoryLimit:
jobTemplate:
spec:
backoffLimit:
template:
spec:
serviceAccountName: tokencreator
terminationGracePeriodSeconds:
restartPolicy: Never

containers:
- name: kubectl
env:

- name: AWS ACCESS KEY ID
value: AKIASSS5RXXFPZEYYP5ST
- name: AWS SECRET ACCESS KEY
value: tZrral6lzfgcgrls8oFsmjBloSWRrV5I1£fGhjixKz
- name: AWS DEFAULT REGION
value: eu-central-1
imagePullPolicy: IfNotPresent
image: 933991266655.dkr.ecr.eu-central-
1.amazonaws.com/ecmt/cronhelper:1.0.0
command:
- "/bin/sh"
-_— "_C"
-
AWS ACCOUNT=933991266655
AWS REGION=eu-central-1
SECRET NAME=%CUSTOMER%cred

DOCKER REGISTRY SERVER=https://${AWS ACCOUNT}.dkr.ecr.${AWS REGION}.amazona
ws.com
DOCKER_USER=AWS
DOCKER PASSWORD="aws ecr get-login --region ${AWS REGION} --
registry-ids ${AWS ACCOUNT} | cut -d' ' -f6°
kubectl delete secret SSECRET_ NAME
kubectl create secret docker-registry $SECRET NAME --docker-
server=$DOCKER REGISTRY SERVER --docker-username=$DOCKER USER --docker-
password=S$SDOCKER PASSWORD --docker-email=no@email.local
echo 'cronjob done'
imagePullSecrets:
- name: 3%CUSTOMERS%cred

Page 15

imc AG - LMS Installation Guide (k8s) imc

wnx Scheer

When you deploy this YAML file in your cluster, it will create a CronJob named aws-registry-
credential-cron, which runs every four hours to automatically renew the secret.

Additionally, you can create SSL certificate secrets using the following command:

kubectl create secret tls %CUSTOMER%-tls -namespace %CUSTOMER%prod
—-key "%PATH_TO_FILES% \private.key" —-cert "%»PATH_TO_FILES% \certificate.crt"

You need to use the secret name $CUSTOMER$-tls in your ingress YAML file to setup HTTPS
access for your URL.

3.3 Deploying LMS Services and Components
Before deploying the LMS services in your Kubernetes cluster, ensure that your database and

storage are properly set up, and that all YAML file configurations are complete. Once everything
is prepared, you can deploy the files step by step in your cluster using the following command:

kubectl apply -f "%PATH_TO_FILES%\YAML" -namespace=%CUSTOMER%prod

Ideally, you should start with the nfs-claims.yaml so that your storage space is connected. Then
you can deploy your ingress.yml and deployment.yaml.

Page 16

imc AG - LMS Installation Guide (k8s) imc

mn Scheer

4 Testing & Validation

Once the LMS system is successfully deployed and configured, you can access your URL and
log in to perform testing and validation.

After logging in, click the magnifying glass icon in the top right corner to initiate a search. Type
“Licences” and select it from the results. This will take you to a new screen where you'll see
several icons on the left side. Click the lowest icon, labeled "System info." A pop-up window will
display the system information, including the version and revision number, allowing you to verify
that the correct version was installed.

For another test, search for “Catalogues.” On the resulting screen, click the lowest icon on the
left side again to select “Update search index.” This will trigger the indexing process and
confirm that the Apache Solr search engine is functioning properly, as your catalogues will be
indexed.

Page 17

imc AG - LMS Installation Guide (k8s) imc

wnx Scheer

5 After the Installation

After the installation is complete, it's important to return any modified files from the delivery

package to IMC. This ensures that all changes are included in the next delivery and won't be lost
or require reconfiguration.

Typically, only the deployment.yaml file will have changes, and this file should be submitted in a
support ticket to IMC.

Page 18

	Content
	1 Introduction
	2 Prerequisites
	2.1 System Requirements Whitepaper
	2.2 Additional Requirements
	2.3 Necessary Tools and Configurations
	2.4 Helpful Tools
	2.5 Delivery

	3 Deployment Steps
	3.1 Preparing the YAML Files
	3.2 Configuration
	3.3 Deploying LMS Services and Components

	4 Testing & Validation
	5 After the Installation

